

Yandex.Mail success story

Vladimir Borodin, DBA

One of the largest internet companies in Europe

57+% of all search traffic in Russia

Ukraine, Kazakhstan, Belarus and Turkey

https://yandex.com/company/technologies

About 6000 employees all over the world

3

About Yandex

https://yandex.com/company/technologies

Launched in 2000

10+ million users daily

200.000 RPS to web/mobile/imap backends

150+ million incoming letters daily

20+ PB of data

4

About Yandex.Mail

Migration from Oracle to PostgreSQL

300+ TB of metadata without redundancy

250k requests per second

OLTP with 80% reads, 20% writes

Previous attempts

MySQL

Self-written DBMS

5

About this talk

6

What is mail metadata?

7

Back in 2012

Everything stored in Oracle

Lots of PL/SQL logic

Efficient hardware usage

10+ TB per shard

Working LA 100

Lots of manual operations

Warm (SSD) and cold (SATA) databases for different users

75% SSD, 25% SATA

9

Yandex.Mail metadata

10

Sharding and fault tolerance

11

Inside the backend

12

Reality

PL/SQL deploy

Library cache

Lots of manual operations

Switchover, new DB setup, data transfer between shards

Only synchronous interface in OCCI

Problems with development environments

Not very responsive support

13

Most common problems

The main reason

shop.oracle.com

http://shop.oracle.com

Timeline

Oct 2012 — the willful decision

Get rid of Oracle in 3 years

Apr 2013 — first experiments with different DBMS

PostgreSQL

Lots on NoSQL stores

Self-written solution on base of search backend

Jul 2013 — Jun 2014 — collectors experiment

16

Experiments

17

About collectors

https://simply.name/video-pg-meetup-yandex.html

Our first experience with PostgreSQL

Monitoring/graphs/deploy

PL/Proxy for sharding

Self-written tools for switchovers and read-only degradation

Plenty of initial problems

2 TB of metadata (15+ billion records)

40k RPS

18

Experiment with collectors

https://simply.name/video-pg-meetup-yandex.html

Aug 2014 — Dec 2014

Storing all production stream of letters to PostgreSQL

Asynchronously

Initial schema decisions

Important for abstraction library

Load testing with our workload

Choosing hardware

Lots of other PostgreSQL related experience

https://simply.name/postgresql-and-systemtap.html

19

Full mail prototype

https://simply.name/postgresql-and-systemtap.html

Jan 2015 — Jan 2016 — development

Jun 2015 — dog fooding

Accelerated development

Sep 2015 — start of inactive users migration

Fixing bugs of transfer code

Reverse transfer (plan B)

Jan 2016 — Apr 2016 — migration

20

Main work

Time to rewrite all software to support Oracle and PostgreSQL

10 man-years

22

Migration

23

Completion

Main changes

25

macs

26

Sharding and fault tolerance

27

Hardware

Warm DBs (SSD) for most active users

Cold DBs (SATA) for all inactive users

Hot DBs for super active users

2% of users generate 50% of workload

Automation to move users between different shard types

TBD: moving old letters of one user from SSD to SATA

28

Hardware

In Oracle all IDs (mid, fid, lid, tid) were globally unique

Sequences ranges for every shard in special DB

NUMBER(20, 0) — 20 bytes

In PostgreSQL IDs are unique inside particular user

Globally unique mid changed to globally unique (uid, mid)

Biginit + bigint — 16 bytes

29

Identifiers

Less contention for single index page

Normal B-Tree instead of reversed indexes

Revisions for all objects

Ability to read only actual data from standbys

Incremental diffs for IMAP and mobile apps

Denormalized some data

Arrays and GIN

Composite types

30

Schema changes

xdb01g/maildb M # \dS mail.box

 Table "mail.box"

 Column | Type | Modifiers

---------------+--------------------------+------------------------

 uid | bigint | not null

 mid | bigint | not null

 lids | integer[] | not null

<...>

Indexes:

 "pk_box" PRIMARY KEY, btree (uid, mid)

 "i_box_uid_lids" gin (mail.ulids(uid, lids)) WITH (fastupdate=off)

<...>

xdb01g/maildb M #

31

Example

PL/pgSQL is awesome

Greatly reduced code size

Only to ensure data consistency

Greatly increased test coverage

The cost of failure is high

Easy deploy since no library cache locks

32

Stored logic

SaltStack

Detailed diff between current and desired state

All schema and code changes through migrations

All common tasks are automated

Representative testing environments

33

Maintenance approach

Problems

Problem with ExclusiveLock on inserts

Checkpoint distribution

ExclusiveLock on extension of relation with huge shared_buffers

Hanging startup process on the replica after vacuuming on master

Replication slots and isolation levels

Segfault in BackendIdGetTransactionIds

A lot more solved without community help

35

Before main migration

http://www.postgresql.org/message-id/466D72D2-68EC-4FF4-93B8-43B687E7B705@simply.name
http://www.postgresql.org/message-id/4AF2BEEF-5BB5-4155-BF70-D3E877914061@simply.name
http://www.postgresql.org/message-id/0DDFB621-7282-4A2B-8879-A47F7CECBCE4@simply.name
http://www.postgresql.org/message-id/FE82A9A7-0D52-41B5-A9ED-967F6927CB8A@simply.name
http://www.postgresql.org/message-id/7F74C5EA-6741-44FC-B6C6-E96F18D761FB@simply.name
http://www.postgresql.org/message-id/20150330162247.2492.923@wrigleys.postgresql.org

Oracle DBA

In any unclear situation
autovacuum is to blame

https://simply.name/pg-stat-wait.html

Wait_event in pg_stat_activity (9.6)

https://simply.name/ru/slides-pgday2015.html (RUS)

37

Diagnostics

https://simply.name/pg-stat-wait.html
http://amitkapila16.blogspot.ru/2016/03/troubleshooting-waits-in-postgresql.html
https://simply.name/ru/slides-pgday2015.html

Our retention policy is 7 days

In Oracle backups (inc0 + 6 * inc1) and archive logs ≈ DB size

In PostgreSQL with barman ≈ N* DB size, where N > 5

WALs compressed but backups not

File-level increments don’t work properly

All operations are single-threaded and very slow

For 300 TB we needed ≈ 2 PB for backups

https://github.com/2ndquadrant-it/barman/issues/21

38

Backups

https://github.com/2ndquadrant-it/barman/issues/21

Not PostgreSQL problems

Data problems

A lot of legacy for 10+ years

Bugs in transfer code

39

During migration

Conclusion

Declarative partitioning

Good recovery manager

Parallelism/compression/page-level increments

Partial online recovery (i.e. single table)

Future development of wait interface

Huge shared buffers, O_DIRECT and async I/O

Quorum commit

41

Our wishlist for PostgreSQL

1 PB with redundancy (100+ billion records)

250k TPS

Three calendar years / 10+ man-years

Faster deployment / more efficient human time usage

All backend refactoring

3x more hardware

No major fuckups yet :)

Linux, nginx, postfix, PostgreSQL

42

Summary

Vladimir Borodin

DBA

Questions?

@man_brain

https://simply.name

+7 (495) 739 70 00, ext.: 7255

d0uble@yandex-team.ru

https://simply.name
mailto:d0uble@yandex-team.ru

